Algorithms for Linear Algebra Problems over Principal Ideal Rings

نویسندگان

  • Johannes Buchmann
  • Stefan Neis
چکیده

We introduce a generalization of the Hermite normal form for matrices over a principal ideal ring R which may contain zero divisors. That normal form allows us to solve the following basic linear algebra problems. Equality decision, containment test and element test for submodules of R k , k 2 IN. The determination of images, kernels, and inverse images of homomorphisms ' : R l ! R k , l; k 2 IN. We analyze the complexity of the algorithms and describe experimental results for R = ZZ=mZZ with positive composite integers m. Using our algorithms is much more eecient than solving the above problems via Hermite normal form computation over ZZ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formalized linear algebra over Elementary Divisor Rings in Coq

This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely presented modules over such rings and the uniqueness of the Smith normal form up to...

متن کامل

The principal ideal subgraph of the annihilating-ideal graph of commutative rings

Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set   of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where   $mathbb{P}(R)$ is...

متن کامل

Lexicodes over Finite Principal Left Ideal Rings

Let R be a finite principal left ideal ring. Via a total ordering of the ring elements and an ordered basis a lexicographic ordering of the module R is produced. This is used to set up a greedy algorithm that selects vectors for which all linear combination with the previously selected vectors satisfy a pre-specified selection property and updates the to-be-constructed code to the linear hull o...

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

An algorithm for commutative semigroup algebras which are principal ideal rings

Associative and commutative algebras with identity have various well-known applications. In particular, many classical codes are ideals in commutative algebras (see [4], [12] for references). Computer storage, encoding and decoding algorithms simplify if all these codes have single generator polynomials. Thus it is of interest to determine when all ideals of an algebra are principal. In [5] Dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996